
An Ontology-Based Infrastructure for Usability Design
Patterns

Scott Henninger 1, Padmapriya Ashokkumar1

1 Univ. of Nebraska-Lincoln, Computer Science and Eng., CC 0112,
Lincoln, NE 68588-0112 USA

{scotth, ashokkum}@unl.edu

Abstract. Usability patterns represent knowledge about known ways to design
graphical user interfaces that are usable and meet the needs and expectations of
users. There is currently a plethora of usability patterns published in books,
private repositories and the World-Wide Web. The dominance of pattern crea-
tion and discovery efforts has neglected the emerging need to organize the pat-
terns so they can become a proactive resource for developing interfaces. This
paper presents an approach using Semantic Web concepts that turns informal
patterns into formal representation capable of supporting systematic design
methods. Through this method, loosely coupled pattern collections can be
turned into strongly coupled pattern languages representing software patterns
and the context in which usability patterns should be applied. Furthermore, we
demonstrate how experience-based mechanisms can be utilized to continuously
improve the resulting pattern libraries.

1 Usability Patterns as an Interface Design Resource

The development of interactive software systems, i.e. systems with significant user
interface components, is currently faced with a dilemma. Design for usability is be-
coming increasingly important to the success of software systems, but software de-
velopers are usually poorly trained in human factors or usability issues. Education
and iterative development processes aimed at evaluating and improving the user inter-
faces are necessary solutions to this problem, but techniques are needed that provide
software developers with proactive knowledge and techniques for developing high
quality user interfaces.

There is no lack of information and guidance on the design, development, and
evaluation of user interfaces. Usability guidelines, patterns, principles, books, Web
pages depicting good and bad examples, databases and various repositories are exam-
ples of both the plethora of knowledge and proliferation of formats that have been
used to disseminate usability design knowledge. Design patterns, structured descrip-
tions of a successful solution to a recurring problem, have emerged as an important
tool that explicitly represents when and how a pattern should be used [7, 10].

Current approaches to representing patterns are document-based, at best supported
with hypertext tools on the Web. These passive representations rely on individual

developers to know of the existence of the resources and understand when they
should be applied. Given the potentially copious numbers of patterns that can be
used in different contexts and the lack of training in usability issues, this is not a
satisfactory solution. Computational pattern representations are needed that facilitate
retrieval, and support for design processes.

In addition, mechanisms are lacking to turn the currently isolated sets of patterns
and pattern collections into a pattern language, [3] an interconnected corpus of knowl-
edge that embodies a degree of consensus the design community. Tools and tech-
niques are needed to create a community of practice in the patterns community that
continuously evolves and refines the available usability patterns.

In this paper, we present a framework in which patterns are represented using Se-
mantic Web technologies [4, 17] for creating ontologies. Ontologies are formal and
explicitly defined specifications of concepts whose meaning is shared within a com-
munity [31]. We provide a specific example of ontologies and associated rules and
inferences that allow intelligent support for applying usability patterns. This is dem-
onstrated through a next-generation BORE (Building an Organizational Repository of
Experiences) system, a software process framework tool for generating flexible de-
velopment methodologies [21]. The BORE framework is extended and used to dem-
onstrate how Semantic Web technologies can be utilized to support distributed on-
tologies and forms of computational reasoning to support the design of user inter-
faces. Description logic reasoning and rules are used to actively deliver patterns and
other usability knowledge to the developer and find related patterns that fit the de-
fined context of the application.

2 Usability Guidelines and Patterns

Usability guidelines have been used to disseminate usability knowledge and ensure a
degree of consistency across applications [24, 29, 34]. Usability guidelines provide
principles and concepts that lead to good interface design from both general and wid-
get-specific perspectives. While hundreds of usability guidelines have been designed
and published, the guideline statements tend to be stated in an abstract, decontextual-
ized, manner. This leads to problems of interpretation, applicability, and ambiguous
or contradictory statements [8, 32] that make it difficult for developers to properly
apply usability guidelines.

A usability patterns community, inspired by the recent work on software patterns,
[5] has begun to explore how patterns can be used to provide an intermediate perspec-
tive between universally applicable usability guidelines and component-specific style
guides [25, 36]. The essential idea of a design pattern is to capture recurring prob-
lems along with the context and forces that operate on the problem to yield a general
solution. Collections of patterns can be organized in a network of higher-level pat-
terns that are resolved or refined by more detailed patterns, resulting in a pattern
language [3].

Differences between usability guidelines and usability patterns lie primarily in per-
spective and representation of the information. The perspective of usability patterns
tends to be more problem-oriented, focusing on describing a problem and solution,

than the more general information or advice perspective of guidelines. Although
templates and data structures for describing guidelines and patterns can easily be
reconciled, the ‘context’ and ‘forces’ fields commonly seen in pattern formats is in-
dicative of a problem-oriented perspective

The goals of both these approaches are essentially the same: to document and
manage experience about usability design issues in a format that is easily dissemi-
nated and understood. But current research has focused on the development of pat-
tern and guideline content, with very little work being performed on tool support for
applying the knowledge contained in guidelines and patterns.

2.1 Current Support for Usability Patterns

Suppose a project team is developing E-commerce website to serve users who want to
purchase a set of products through a Web browser. The product offerings are large
and diverse enough that it makes sense to divide the site into multiple Web pages
with navigational aids to go between categories. But this leaves the sticky problem of
how to collect items that have been chosen in different places in the site, both from a

Fig. 1. An Online Usability Patterns Collection (from [van Welie 2005]).

usability perspective and an information retention perspective (i.e. keeping track of
chosen items across separate Web pages).

Some members of the team are aware that proven usability knowledge for these
types of interfaces is available and refer to the Interaction Design Patterns website
(often referred to as the Amsterdam Patterns Collection) [35] containing over 60 us-
ability patterns (see Fig. 1), including guidelines relevant to the project such as
Ecommerce and Web shopping patterns. Many other pattern collections exist, both in
Web sites [15, 27, 33] and books, [34] and could also be used by the team instead of
or in addition to this pattern collection.

Given the discovery of this pattern collection, the team must read, digest and sort
out the collection of patterns to find which ones might be applicable to parts of their
interface design. This leads to a number of problems when trying to design the sys-
tem using the pattern collection. First, since the patterns are not represented in a
problem-oriented form, it is not immediately clear which set of patterns apply to a
particular problem. For example, the shopping cart pattern [35] is a solution to the
problem of users purchasing items, but it is not clear which other patterns may also
apply to this situation. The developers must read all the patterns and make decisions
about the applicability of each pattern to the current project.

Second, after a particular pattern has been chosen, there are no indications or for-
mal relationships about which pattern(s) should be used with the chosen pattern. For
example, using the Shopping pattern may involve choices for specific interaction
types, such as using a persistent button or frame to indicate and store persistent items
across Web pages, or the need for specific types of search interactions. The patterns
are represented in informal natural language, at best using hyper links, or a “Related
patterns” field that link to other patterns in the collection. Otherwise, there is little to
no information on how the patterns may work together for solutions to larger prob-
lems. In addition, there are no links between pattern collections, making the work for
the development even harder, as the relationship between patterns in collections is not
specified, or at best specified with a hypertext link that carries no semantics.

2.2 Tools for Finding Guidelines

Because usability patterns are such a new discipline, few or no tools have been built
to help people find relevant patterns. Within the guidelines community, a number of
tools have been developed, such as classification schemes, [28] and various informa-
tion retrieval and hypertext tools [23]. Efforts have also defined mechanisms for
validating guidelines, although few efforts have followed such standards. This is also
the case for design patterns [14] where the tool most used are UML models and, but
no attempt is made to investigate relationships between patterns and/or composing
multiple patterns [2].

The potential utility of using the structured format of patterns, for example using
the context field to formally or systematically indicate when a pattern should be used,
has yet to be explored in any detail. The current state of affairs for pattern users are
the existence of collections of patterns made available through a handful of portals [6,
9], books or Wikis. Even if there were HTML hypertext links between these collec-

tions (and there are very few), no semantic information is carried by a hyperlink,
other than a on-dimensional and vague “is-related-to” (AKA “see-also”, etc.).

A problem with all of these approaches is that they are based on passive reposito-
ries. People must know and understand that appropriate patterns exist before they will
begin to look for them. Even then, people will have trouble articulating their queries
in the language and mental models [13] used by pattern developers. Because of these
issues passive repositories attached to search engines will always be vastly underuti-
lized. Techniques that actively tell the user of potentially relevant information, such
as critics, [11] and agents [17] are needed to make patterns a more effective tool for
software developers.

3 Using the Semantic Web to Represent Pattern Languages

We have been investigating how currently defined Semantic Web standards (recom-
mendations) can be utilized to define formal descriptions of usability patterns in a
form that computers can understand and that can easily be converted into a human-
readable form. In addition, the distributed facilities provided by the World-Wide Web
raises possibilities for both tying multiple distributed pattern collections together
while providing a computational medium that allows agents to make intelligent infer-
ences on the relationships between patterns

3.1 Ontologies

In a computational context, an ontology is a description of the concepts and relation-
ships between concepts that are formally defined within a domain of interest. On-
tologies are created as a set of definitions from a formal vocabulary defining a
“schema” and instances (often referred to as individuals) of the schema concepts. For
example, Fig. 2 contains parts of a Protégé 3.0 [30] screen image using the Semantic
Web language OWL (Web Ontology Language) that implements forms of Descrip-
tion Logics [26]. In the taxonomy (the “Asserted Hierarchy”), the concept ‘Browsing’
is defined as a type of ‘GUI_Design’. Note that terms in this ontology have a
class/subclass relationship which have been “Asserted”, i.e. defined by an ontology
designer.

In addition to supporting hierarchies and taxonomies, ontologies define concept
properties, which are independently defined concepts that describe relationships be-
tween concepts. In Fig. 2, the concept Browsing has a number of properties (follow
the red arrow), such as ‘hasProblem’, ‘hasSolution’, ‘hasContext’, ‘hasAlternative’,
etc. Each of these properties is defined by a domain and a range. For example, the
hasSolution property has a domain of Software_Pattern and a Range of PatternCon-
cepts (not shown), meaning all individuals with the hasSolution property will define a
relationship in which an instance of Software_Pattern “has solution” of type Pattern-
Concepts.

In addition, the hasSolution property has an additional restriction denoted by the
sub-property for hasSolution and the Necessary condition of the form “∃ hasSolution
RelationBased_Search”. ‘∃’ is an existential quantifier that restricts values of ‘hasSolu-
tion’ to having at least one value from the class “RelationBased_Search”. This means
that any solution to the Browser pattern must have at least one solution from the class
of RelationBased_Search concepts.

These are just a few examples of how OWL-DL can be used to formally describe
usability patterns. Given this baseline, there are a number of classification and con-
sistency checking inferences that can be made. For example, given an instance of the
Browsing pattern with a hasSolution property with the individual treeViewBrowser, a
reasoner can classify treeViewBrowser to be of type PatternConcept, given that Rela-
tionBased_Search is a subtype of PatternConcept (not shown). Furthermore, if there
is only one hasSolution property, then it must be of type RelationBased_Search be-
cause of the existential quantification restriction. In this case, treeViewBrowser is
classified as an instance of RelationBased_Search. Other examples of classification,
as well as consistency checking using OWL will be demonstrated later in the paper.

Fig. 2. An Example Class Structure of an Ontology for Usability.

4 Building an Organizational Repository of Experiences

Instead of being solely relegated to a discretionary reference role, the knowledge
contained in usability resources has the potential to be delivered as an integral part of
the software development process. BORE (http://cse-ferg41.unl.edu/bore.html) is a
process framework that organizations can use to create multiple methodologies that
describe defined development processes [21]. BORE is used here as an existing
framework for investigating new research in Semantic Web technologies and usabil-
ity patterns. Previous work with BORE used an entirely different rule-based frame-
work and explored the specific domain of software process tailoring [18, 21]. For
this research, the hierarchical work breakdown structure and case organization of
BORE is utilized to demonstrate how patterns are delivered to users, while replacing
the internal system with a Semantic Web-based infrastructure.

4.1 Using BORE and Patterns

In a typical Web storefront, users traverse the Web site and find products to purchase.
Lists of products are displayed and the user selects one or more. If the Web site is

Fig. 3. The BORE Task Manager Showing a Methodology with

complex enough, a shopping cart metaphor is used to allow people to browse between
Web pages and retain items that have been purchased. Users/customers will often
have the option of entering personal data for future sessions with the Web site.

Suppose a project team is developing such an e-commerce website using BORE.
When the project is first created in BORE, an instance is created from a BORE meth-
odology the “Ecommerce Web Design” methodology, whose work breakdown activi-
ties are shown in Fig. 3. E-commerce Web Design, with a set of activities. The activi-
ties in this methodology consist of all activities that have been defined for the domain
in a manner similar to how the patterns were described in Owl in the previous section.
Note that patterns are incorporated into the activities (patterns are denoted by the ‘P’
in the center of the activity icon) at specific places in the process. This is done be-
cause patterns can be seen as major activities that a project is held responsible for.
Not all of the activities shown in Fig. 3 for the Ecommerce Web design methodology
will be used by any one project. Each project will customize the methodology to
their needs using the methodology rules.

4.2 Defining Context Through Task Options

Tailoring the methodology to meet the needs of a project is a major task addressed by
BORE [21]. This is accomplished through options defined within the activity struc-
ture using Question/Answer pairs (see Fig. 4). These options can be defined on any
activity in the methodology and are normally used to break an activity down into
constituent sub-activities. Those with options are denoted in the Task Manager with
a red ‘?’, as seen in Fig. 3 and Fig. 4. Choosing the options define project character-
istics (a representation of functional and non-functional requirements) that define the

Fig. 4. Using Rule-Based Task Options in BORE.

special needs of the project. In the background, rules fire when pre-specified Q/A
pairs are chosen.

For example, when the ’11-25’ is chosen for the question “How many categories
of items will be accessible on this Web site?” and “Between 10 and 25” is chosen for
“Within the categories, what is the range of items available for purchase”, then the
“Shopping Cart pattern”, amongst other activities, is chosen as a means to address a
domain with a fairly high number of categories and categories per item.

Rules in BORE use a different mechanism than the OWL inferencing described in
previous sections. Currently a proprietary forward-chaining rule engine is employed
to define preconditions, actions and fire actions with backtracking options [19]. Later
versions will use W3C SWRL (Semantic Web Rule Language) [22] tools, once the
SWRL recommendation is finalized.

Depending on the user’s questions and answers, many other patterns may be in-
cluded in the workflow of this project. One of the main patterns for the Ecommerce
Web Design domain is the Shopping Cart pattern. When a pattern is double-clicked,
its corresponding OWL file, which is based on XML, is parsed, and converted into
HTML for display in the case window, as shown in Fig. 5.

4.3 Inferring Relationships Among Patterns

Fig. 6 shows parts of an ontology that begins to implement a pattern language for the
online shopping domain. Note that the “Asserted Hierarchy” view (Class Hierarchy,
Callout 1) stems from the “Pattern_Level” root concept, which is modeled after a
usability pattern language [37]. The Shopping pattern, being a subclass of Experi-
enceLevel is an “experience” level pattern. Experience level Patterns describe com-
mon experiences for which lower level patterns like Task Level Patterns and Action

Fig. 5. A Usability Pattern in BORE.

Level Patterns can be used to create that experience. Task Level patterns such as
ShoppingCart, ProductComparison perform a task like choosing products to buy or
comparing products. Task Level Patterns are linked to Experience Level Patterns
using various relationships. Similarly Action Level patterns are linked to Task Level
patterns. The concepts in this ontology represent patterns such as ShoppingCart,
Wizard, Paging etc. (see callout 1 in Fig. 6). ShoppingCart is a subclass of both the
Ecommerce pattern concept and the TaskLevel pattern concept.

The properties (see Callout 2 in Fig. 6) represent relationships between instances
of patterns. Some example relationships between patterns in this ontology include:
Pattern A contains Pattern B, Pattern A is equivalent to Pattern B, Pattern A is an
alternate to Pattern B. Pattern A is specialization of Pattern B, Pattern A is to be used
in combination with either Pattern B or Pattern C, pattern A is disjoint with pattern B.
These are a few examples of relationships that exist in our ontology, but are not ex-
plained here for the sake of conciseness. Another example, shown in Callout 2 of
Fig. 6, is the includesPattern property defined with the domain and range defined as
the type Pattern_Level (see Callout 3 in Fig. 6). The includesPattern property is also
transitive (Callout 4), meaning that Reasoners can infer transitivity relationships with
other class instances defined with the includesPattern properties.

Callout 5 shows that the alternate property is symmetric, meaning that an individ-
ual a related to an individual b by alternate also defines a relationship from individ-

1. Class
Hierarchy

2. Properties of
ShoppingCart

Class

4. OWL construct
used to define

transitive properties

5. OWL symmetric
property

7. Class Hierarchy
inferred by Racer

(reasoner)

8. Inferred relationships
for class ShoppingCart
based on ∃ restriction

for includesPattern

6. Necessary
Conditions for

ShoppingCart class

3. Domain and range
definitions for

includesPattern
property

Fig. 6. An Example Pattern Language shown in Protégé.

ual b to a of the same type, alternate. For our ontology, this means that if patternA is
an alternate for patternB, then patternB is also an alternate pattern for patternA.

Necessary Conditions, see Callout 6 in Fig. 6, define the conditions that must nec-
essarily be fulfilled to be a member of the class. In this example, an individual must
be a subclass of Ecommerce and a subclass of TaskLevel. In addition, the in-
cludesPattern property is restricted to members of the Wizard class through a univer-
sal quantifier (∀). This means that all included patterns (through the includesPattern
property) must be a type of Wizard. The individual may have other attributes and
classifications as well, but as long as the Necessary Conditions are fulfilled, the indi-
vidual will be classified as a ShoppingCart pattern.

Areas marked in red in Fig. 6 represent inferences made with the help of a rea-
soner1 and OWL constructs. Callout 7 shows the inferred class hierarchy. Note that
AdvancedSearch has been inferred to be a type of Searching that is equivalent to the
class SimpleSearch. This occurs because SimpleSearch definesa restriction on the
alternate property that it must be a type of AdvancedSearch. Since alternate is a
symmetric property, then AdvancedSarch has the same alternate property. I.e. Ad-
vancedSarch has the (rather strange) property restriction “∃ alternate AdvancedSearch”.
The only difference between the classes is that AdvancedSearch is a type of Simple-
Search and SimpleSearch is a type of Searching. Since both are subclasses of Search-
ing (subtype is by definition a transitive relationship), the class definitions are equiva-
lent. This inference is a good example of the kind of consistency checking that rea-
soners can do with OWL description logic constructs.

Another example of inferencing is shown in Callout 8, which shows the inferred
relationships for the pattern ShoppingCart based on property includesPattern. Since
includesPattern is a transitive relationship and ShoppingCart includesPattern Wizard
and Wizard includesPattern Paging, the inferred relationships show both Wizard and
Paging as subclasses of ShoppingCart. This is equivalent to saying “When you use
patternA, you must use patternB” or “if you want to use patternA, then paternB might
be an alternative”.

Thus when a developer selects a specific pattern to use, the reasoner processes the
relationships of that pattern with other patterns in the knowledge base and infers and
returns all other related patterns that the developer might not be aware of, based on
the relationships that have been defined in the ontology. Similarly when two patterns
are alternatives to each other the developer may choose to use either of them. Based
on the pattern chosen, other patterns are included because of the relationships defined
in the ontology. This provides information to BORE or other design tool that help
people to rapidly explore and choose design alternatives.

For example, whenever a searching mechanism like SimpleSearch or Advanced-
Search is used also include SearchTips pattern. This kind of domain knowledge can
be represented as if-then rules and applied using a rule engine. Whenever the if clause
is satisfied, the actions in the then part are performed.

The main advantage of using a Semantic Web tool like BORE is that the two most
time consuming and complicated steps of this process are taken care of by the tool
itself. Previously, the team had to become pattern experts themselves in order to fully

1 For this example, we used the Racer [16] plug-in for Protégé.

understand all the patterns in the repository. With BORE, the team gets the same
benefit of the patterns, but without having to become pattern experts or determine
relationships between patterns.

4.4 Knowledge Building vs. Knowledge Management

The BORE tool, in combination with Semantic Web technology, is not just a reposi-
tory and an intelligent search engine, but a means to collectively draw on the experi-
ences of a wide range of usability projects and the different contexts that led to dif-
ferent decisions and designs. The formal, but flexible, nature of the Semantic Web
supports the role of learning and creating new knowledge in the creative process of
design [12].

Thus, knowledge is built, not managed in the process of design [20]. The inheri-
tance hierarchy of the Semantic Web allows the flexible definition of concepts and
fine-grained distinctions between them. The contextual and relationships attributes of
the classes allow the definition of a context-sensitive pattern language capable of
telling developers when and why a particular pattern should be used in a specific
context. The context of the design problem can be represented in many ways, such as
user-task models. BORE uses a rule-based representation that explicitly captures the
requirements of the system.

5 Contributions and Future Work

The general goals of this approach are threefold: 1) To build a tool that puts context-
appropriate usability guidelines at the fingertips of software designers and usability
specialists so they can be used early in the design and development process. 2) To
create a formal framework for creating an interconnected pattern language for usabil-
ity knowledge. 3) To construct tools to facilitate community-based evolution of
knowledge in the usability community through the combination of design patterns
and Semantic Web representations.

In doing so, we have begun to resolve many of the problems that currently plague
the usability patterns community, as well as the software patterns community as a
whole. While a main goal of patterns is to form a vocabulary that helps developers
communicate better [38], too many pattern collections have been created that draw
little or no relationships between each other, in essence creating islands of patterns
that sometimes contradict, duplicate, or are inconsistent with one another.

We see context as one of the main organizing features of patterns. Usability issues
and decisions are often, if not always, context-sensitive. Capturing this context is just
the first step at making usability design a more stable or scientific endeavor.

Beyond the critical need for evaluating various aspect of our ontology-based pat-
tern language approach, there is a need to port the current BORE prototype from its
currently fractured state into a more integrated and accessible platform. We are cur-
rently focusing on the Eclipse platform as a framework for this integration effort.
This has the simultaneous advantage of being an increasingly accepted platform for

development and the focus of current efforts to integrate Semantic Web tools and
technologies, such as the Protégé ontology tool used in this work, into Eclipse plug-
ins.

6 Conclusions

At the end of our research we end up with two related, but distinct, entities 1) an open
environment for the creation and validation of usability patterns and relationships
between them using intelligent Semantic Web technology, and 2) the BORE tool that
uses this structure to deliver usability knowledge to software developers that may or
may not have had any usability training.

The objective of this research is not an attempt to automate user interface design.
To the contrary, it is recognized that effective user interface design take a degree of
talent and careful work with the end users that cannot be captured through rules,
patterns or any information system. Nonetheless, there is recognized knowledge and
conventions that can help some designers reach higher levels of competency and help
accomplished designers extend their knowledge to areas they have not yet experi-
enced. This research is an exploration of how resources can be delivered to software
developers through a representational medium that serves to establish relationships
between context and usability resources and serve as a formal mechanism for com-
municating and refining usability design knowledge.

Continued research is needed to further understand the complexities of creating re-
positories of usability patterns and applying them proactively in the software devel-
opment process. We have only taken small steps in this direction, and hope that fu-
ture validation and use of our approach provide more information of usability knowl-
edge and the contextual factors that impact this knowledge.

Acknowledgements. We gratefully acknowledge the efforts a number of students
that have contributed in various ways in this and associated research, including Ryan
Kinworthy, Rishi Kumar, Sarita Navuluru, and Sarathkumar Polireddy. This research
was funded by the National Science Foundation (CCR-9988540, and ITR/SEL-
0085788).

References

1. M. S. Ackerman, T. W. Malone, "Answer Garden: A tool for growing organizational
memory," Proceedings of the Conference on Office Information Systems, ACM, New
York, pp. 31-39, 1990.

2. C. Alexander, "The Origins of Pattern Theory: the Future of the Theory, and the Genera-
tion of a Living World," OOPSLA 1996 Keynote Address,
http://www.patternlanguage.com/archive/ieee/ieeetext.htm, 1996.

3. C. Alexander, The Timeless Way of Building. Oxford Univ. Press, New York, 1979.
4. T. Berners-Lee, J. Hendler, O. Lassila, "The Semantic Web," in Scientific American, vol.

May 2001, 2001.

5. J. Borchers, "CHI Meets PLoP: An Interaction Patterns Workshop," in SIGCHI Bulletin,
vol. 32, 2000, pp. 9-12.

6. J. Borchers, "hcipatterns.org: Patterns," http://www.hcipatterns.org/patterns.html, Last
Updated March 2004, 2004.

7. G. Casaday, "Notes on a Pattern Language for Interactive Usability," Proc. Human Factors
in Computing Systems (CHI '97), Atlanta, GA, ACM, pp. 289-290, 1997.

8. F. de Souza, N. Bevan, "The Use of Guidelines in Menu Interface Design: Evaluation of a
Draft Standard," Human-Computer Interaction - INTERACT ‘90, Elsevier, North-Holland,
pp. 435-440, 1990.

9. T. Erickson, "The Interaction Design Patterns Page,"
http://www.visi.com/~snowfall/InteractionPatterns.html, Last Updated March 2005, 2005.

10. T. Erickson, "Lingua Francas for Design: Sacred Places and Pattern Languages," Proc.
Designing Interactive Systems (DIS 2000), New York, pp. 357-368, 2000.

11. G. Fischer, A. C. Lemke, T. Mastaglio, A. I. Morch, "Critics: An Emerging Approach to
Knowledge-Based Human Computer Interaction," in International Journal of Man-Machine
Studies, vol. 35, 1991, pp. 695-721.

12. G. Fischer, J. Ostwald, "Knowledge Management: Problems, Promises, Realities, and
Challenges," in IEEE Intelligent Systems, vol. 16, 2001, pp. 60-72.

13. G. W. Furnas, T. K. Landauer, L. M. Gomez, S. T. Dumais, "The Vocabulary Problem in
Human-System Communication," in Communications of the ACM, vol. 30, 1987, pp. 964-
971.

14. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

15. R. Griffiths, "The Brighton Usability Pattern Collection,"
http://www.cmis.brighton.ac.uk/research/patterns/home.html, 2002.

16. V. Haarslev, R. Möller, "Racer: An OWL Reasoning Agent for the Semantic Web," Proc.
Int'l Wkshp on Applications, Products and Services of Web-based Support Systems (Held
at 2003 IEEE/WIC Int'l Conf. on Web Intelligence), Halifax, Canada, pp. 91-95, 2003.

17. J. Hendler, "Agents and the Semantic Web," in IEEE Intelligent Systems, vol. 16, 2001, pp.
30-37.

18. S. Henninger, "Tool Support for Experience-Based Methodologies," in Advances in Learn-
ing Software Organizations (LSO 2002 Revised Papers), vol. LNCS 2640, 2003, pp. 44-59.

19. S. Henninger, "Tool Support for Experience-Based Software Development Methodolo-
gies," in Advances in Computing, vol. 59, 2003, pp. 29-82.

20. S. Henninger, "Turning Development Standards Into Repositories of Experiences," in
Software Process Improvement and Practice, vol. 6, 2001, pp. 141-155.

21. S. Henninger, A. Ivaturi, K. Nuli, A. Thirunavukkaras, "Supporting Adaptable Methodolo-
gies to Meet Evolving Project Needs," Joint Conference on XP Universe and Agile Uni-
verse, Chicago, IL, pp. 33-44, 2002.

22. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean, "SWRL: A
Semantic Web Rule Language Combining OWL and RuleML," W3C,
http://www.w3.org/Submission/SWRL/, Last Updated May 21, 2004.

23. R. Iannella, "HyperSAM: A Practical User Interface Guidelines Management System,"
Proceedings of the Second Annual CHISIG (Queensland) Symposium - QCHI ‘94, Bond
Univ., Australia, 1994.

24. S. J. Koyanl, R. W. Bailey, J. R. Nall, "Research-Based Web Design & Usability Guide-
lines," Communications Technology Branch, National Cancer Institute & US Dept of
health and Human Services, http://www.usability.gov/pdfs/guidelines.html, 2003.

25. M. J. Mahemoff, L. J. Johnston, "Principles for a Usability-Oriented Pattern Language,"
Proc. Australian Computer Human Interaction Conference OZCJI 98, Adelaide, IEEE
Computer society Press, pp. 132-139, 1998.

26. E. Miller, R. Swick, D. Brickley, B. McBride, J. Hendler, G. Schreiber, D. Connolly,
"W3C Semantic Web," World-Wide Web Consortium, http://www.w3.org/2001/sw/, Last
Updated Aug. 19, 2005.

27. PoInter, "Patterns of Interaction: a Pattern Language for CSCW,"
http://www.comp.lancs.ac.uk/computing/research/cseg/projects/pointer/pointer.html, Ac-
cessed: June 2005, 2005.

28. D. Scapin, C. Leulier, J. Vanderdonckt, C. Mariage, C. Bastien, C. Farenc, P. Palanque, R.
Bastide, "A Framework for Organizing Web Usability Guidelines," 6th Conf. on Human
Factors and the Web, Austin, TX, on-line at:
http://www.tri.sbc.com/hfweb/scapin/Scapin.html, 2000.

29. S. L. Smith, J. N. Mosier, "Guidelines for Designing User Interface Software," ESD-TR-
86-278, Technical Report, The MITRE Corporation, 1986.

30. Stanford Univ., "Protégé Project," National Library of Medicine,
http://protege.stanford.edu/, Last Updated Feb. 2005, 2005.

31. R. Studer, V. R. Benjamins, D. Fensel, "Knowledge Engineering: Principles and Methods,"
in Data and Knowledge Engineering, vol. 25, 1998, pp. 161-197.

32. L. Tetzlaff, D. R. Schwartz, "The Use of Guidelines in Interface Design," Proc. Human
Factors in Computing Systems (CHI '91), ACM, New York, pp. 329-333, 1991.

33. J. Tidwell, "UI Patterns and Techniques," http://time-tripper.com/uipatterns/, Last Updated
May, 2005.

34. D. K. van Duyne, J. A. Landay, J. I. Hong, The Design Of Sites. Addison-Wesley, 2002.
35. M. van Welie, "Patterns in Interaction Design," http://www.welie.com/, Last Updated 25-

05-2005, 2005.
36. M. van Welie, G. van der Veer, A. Eliens, "Patterns as Tools for User Interface Design,"

Workshop on Tools for Working With Guidelines, Biarritz, France, 2000.
37. M. van Welie, G. C. van der Veer, "Pattern Languages in Interaction Design: Structure and

Organization," Proceedings of Interact '03, Zürich, Switserland, M. Rauterberg, Wesson,
Ed(s). IOS Press, Amsterdam, The Netherlands, pp. 527-534, 2003.

38. J. Vlissides, "Patterns, The Top 10 Misconceptions," in Object Magazine, 1997.

